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Abstract 

 

Architecting a real-time graphics engine capable of supporting large quantities 

of dynamic lights is a difficult challenge when also taking into consideration the 

development of an efficient batching system. Deferred shading provides a 

solution to this issue, at the cost of material flexibility. Light pre pass, an 

extension of deferred shading, allows the lighting benefits of deferred shading 

to be achieved with additional material flexibility at the cost of an additional 

scene render.  

 

Stereoscopic entertainment has recently increased in popularity with the release 

of new 3D filtering technology. With the industry now opening up to 3D games, 

having stereoscopic 3D a core feature of a game, can give it an advantage over 

the competition as consumers embrace the new technology. 

 

The goal of this project was to develop a graphics engine capable of supporting 

many dynamic lights, by implementing light-pre-pass pipeline, in addition to 

stereoscopic rendering, to provide the user with a more immersive experience. 

The renderer needed to be efficient, and so optimization techniques such as 

culling and batching were implemented. 

 

This report discusses the development of the project, from design to 

implementation, and presents the Duality Engine as a real-time graphics engine 

capable of the initial requirements. 
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I  Introduction 

1.1 Background 

 

Real-time rendering is a core element of game engines. To ensure an engine performs well at 

real-time rates, the render process must be efficient and optimized well. With the vast appeal 

of increasing quantities of dynamic lighting in real-time scenes, deferred shading is becoming 

more popular among graphics engine developers. In addition, with the recent resurgence of 

interest in 3D entertainment, stereoscopic rendering can provide an advantage over other 

games on the market. 

 

1.2 Overview 

 

This report highlights the development of the Duality Engine, and discusses the technology 

used to implement its main features.  

 

In Chapter 2, an overview of recent advancements in real-time rendering of dynamic lighting 

is presented. This Chapter evaluates standard deferred shading, and discusses alternatives 

such as the light-pre-pass renderer.  Chapter 3 elaborates on this, by presenting how light-pre-

pass was implemented in the Duality Engine, and discussing any issues during development.   

Chapter 4 focuses on lighting and shadows, through lighting models, shadowing techniques 

the light types implemented in the Duality Engine. Chapter 5 overviews the theory behind 

stereoscopic rendering, the increasing popularity, and discusses the integration of 

stereoscopic rendering with the engine. The Duality Engine’s core component, the renderer, 

is discussed in Chapter 6, from design through to implementation and evaluation. This is 

followed by the render process of DirectX11, in Chapter 7. Chapter 8 presents the 

development of the Duality Engine itself, from design to implementation, and evaluates the 

development experience. Chapter 9 presents the results of bench marking tests performed to 

analyse the performance of the Duality Engine on different hardware. Finally, Chapter 10 

evaluates the development of the entire project. 
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II Deferred Shading Techniques 

2.1  Introduction 

2.1.1 Context 
 

Rendering a scene with dynamic lighting in real-time is a core renderer feature for most 

modern real-time renderers. As pixel shading techniques increase in complexity, previous 

methods of calculating the dynamic light contribution on geometry are too slow for scenes 

with many lights due to pixel overdraw. In some cases, the light contribution is calculated by 

rendering the scene geometry in multiple passes and combining the lighting until the 

contribution from every light is calculated (Engel, 2009).  

 

In standard forward shading, due to the lighting being coupled with the geometry, the average 

time taken to render a single frame is directly proportional to the number of lights affecting 

the geometry and the complexity of the geometry (Hargreaves, 2004). 

 

For a scene with eight lights, a forward renderer would use a shader generated for that 

number of lights. Generating shaders for each material with each number of lights suffers 

from combinatorial explosion. With twelve lights and four different material types, this 

would combine to be forty-eight different shaders for four materials. This does not take into 

account different light types. This raises issues with architecting an optimized rendering 

system using batching, as the batch order would need to be by light quantity and type. 
 

2.1.2 Overview 
 

Using a deferred shading approach, a scene can be rendered in real-time with a high number 

of lights irrespective of scene geometry complexity (Valient, 2007). Section 2.2 presents the 

concept of the deferred shading approach, benefits of using deferred shading and known 

implementation issues. Section 3 presents three alternative solutions which develop the 

deferred shading concept.  
 

2.2 Deferred Shading 

2.2.1 The Deferred Shading Concept 
 

The standard forward rendering technique to 

render a scene using dynamic pixel lighting 

involves calculating the most influential 

lights when rendering geometry (Placeres, 

2006). A common approach for applying 

many lights is to apply different shaders for 

each material for different quantities and 

types of lights. Due to the tight coupling 

between geometry, materials and lighting 

calculations, scene complexity is 

proportional to the number of objects 

combined with the number of applied lights 

(Hargreaves, 2004).  

 
Figure 2.1.1 An in-game night scene from 

GrandTheftAuto IV. Car and street lighting is 

calculated using a deferred approach. 
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An issue with performing lighting calculations when rendering geometry arises when new 

geometry is rendered over existing geometry. This overdraw impact can be lowered using a 

deferred approach.   

 

The deferred shading technique was first proposed by Deering (1988), though the technique 

wasn’t labelled “Deferred shading” until later (Hargreaves, 2004). By storing the data 

required to complete the lighting equation, the lighting can be decoupled from the rendering 

of geometry, this allows the lighting to be applied as a post-process (Placeres, 2006).  

 

The deferred shading concept is composed of three main stages: the geometry stage – where 

the scene is rendered and material data is stored, the lighting stage- where the lighting is 

calculated, and the composition stage – where the lighting is combined with the material from 

the geometry stage. 

 

As the lighting calculation is removed from the geometry stage, the implication of overdraw 

is minimised, as lighting calculations won’t be wasted on pixels which don’t appear in the 

final render. This allows a higher number of lighting calculations per pixel than a standard 

forward renderer, and thus more lights. 
 

2.2.2 The G-Buffer 
 

The lighting stage requires the position data and normal data for each pixel to apply the 

lighting as a post-process. This data is gathered into a collection of textures during the 

geometry phase, known as the Geometry Buffer (or “G-Buffer”) to allow the equation to be 

completed at a later stage (Akenine-Möller, Haines, and Hoffman, 2008). 

Frank Puig Placeres (2007) proposed the G-Buffer 

structure shown in Figure 2.2.2 as an initial starting point 

for deferred shading. However, this structure does not 

store any material properties, such as the diffusive colour 

of the object, or how reflective the material is. 

Furthermore, the same lighting model must be applied to 

each pixel during the lighting stage (Engel, 2009). 

 

For instance, if the Blinn-Phong lighting model was used 

to construct the lighting accumulation, the entire scene 

would be lit using Blinn-Phong shading. This may not be 

desired, as different lighting models are suited to 

different materials, i.e. Minneart for a silk dress. 

 

 

 

 

 

 

 

 

Figure 2.2.1  Deferred shading pipeline  

(courtesy of Frank Puig Placeres) 

 

 

G-Buffer 

Composition 

 

Geometry phase 

Lighting phase 



8 
 

  

 

 

Figure 2.2.2 Example G-Buffer layout (courtesy of Frank Puig Placeres) 

To solve this problem, a value could be stored in either the position or normal texture’s alpha 

channel to indicate which lighting model to use, although these channels may be required to 

store material information as shown in Figure 2.2.3.  

 R G B A 

Texture 1 Normal X Normal Y Normal Z Scattering 

Texture 2 Diffuse 

Colour R 

Diffuse 

Colour G 

Diffuse 

Colour B 

Emissive 

Texture 3 Specular 

Intensity 

Specular 

Power 

Occlusion  Shadow 

amount 

Texture 4 Depth Depth Depth Depth 

Figure 2.2.3  Example G-Buffer layout (courtesy of Shawn Hargreaves) 

 

 

 

Figure 2.2.4  Example texture components of a G-Buffer; depth (upper left), 

normal (upper right), diffuse (lower left), specular intensity (lower right). 

(Courtesy of Shawn Hargreaves) 

 R G B A 

Texture 1 Position X Position Y Position Z [empty] 

Texture 2 Normal X Normal Y Normal Z [empty] 
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Figure 2.2.5  Example composition of lighting 

accumulation with G-Buffer textures. (Courtesy of 

Shawn Hargreaves) 

 

To specify material attributes, the G-Buffer 

must contain more textures as demonstrated 

in Figure 2.2.3 and Figure 2.2.4 with the 

addition of diffusive colours, specular 

properties and other material attributes. 

These material attributes are then combined 

with the accumulated lighting to create the 

final frame image as shown in Figure 2.2.5. 

 

The depth of each pixel can be stored rather 

than the position, as the viewspace and 

worldspace positions can be reconstructed 

using the depth (Hargreaves, 2004).  

This allows a single value to be stored instead of three, so more material data can be stored in 

the texture by lowering the precision of the depth value stored. Shown in Figure 2.2.3. 

2.2.3 Issues with Deferred Shading 
 

As the lighting is decoupled from the rendering of scene geometry, all material attributes 

which directly affect lighting must be output to the G-Buffer (Engel, 2009). As a result the 

flexibility of materials is tightly dependant on the available memory of the platform. 

 

The G-Buffer is composed of several textures which are output from the geometry stage, so 

the platform must support Multiple Render Targets, otherwise the scene geometry must be 

processed for each texture (Engel, 2009). Aside this requirement, as each texel must be 

written for each texture in the G-Buffer, deferred shading often suffers from a high fill rate 

requirement. Where a standard forward approach would merely output a single colour value, 

a deferred approach would output four sets of values per pixel. 

 

Due to the G-Buffer storing the data per-pixel, only the closest fragment will be stored in the 

G-Buffer, which results in semi-transparent objects overriding the geometry data behind 

(Pangerl, 2009). For this reason semi-transparent geometry is not stored when writing the G-

Buffer. 
 

2.2.4 The Benefits of Deferred Shading 
 

The most noticeable benefit of deferred shading is the availability of high quantities of 

dynamic lights within a scene. Alongside this, popular post-processing techniques have the 

desired texture inputs from the G-Buffer to not require rendering the scene using multiple 

passes. Depth of field, ambient occlusion and fog can sample the G-Buffer textures without 

needing to gather new data. New graphics techniques such as soft shadows calculated in 

screen space also benefit from using these textures (Gumbau, Chover and Sbert, 2010).  

 



10 
 

The lighting stage of deferred shading can also be interlaced with an existing forward 

renderer given the renderer supports a depth only pre pass. This was illustrated by Malan 

(2009) during the production of Crackdown, where the lighting for street lamps and car 

headlights were applied after the scene had been processed. 
 

2.3  Alternate Solutions 

The standard deferred shading concept stores material data at the pixel level and then 

calculates the accumulated lighting for each pixel using the material data. However, if the 

lighting can be calculated prior to rendering the geometry, the amount of data needed to 

bridge the lighting and geometry stage is minimised. 
 

 

 

2.3.1 Light Indexed Deferred Rendering 

 

Damian Trebilco (2009) proposed a solution 

to separate the lighting and geometry 

rendering stages; similar to standard deferred 

shading, but with light accumulation 

calculated prior to geometry rendering. 

 

Trebilco modified the standard deferred 

shading pipeline to include a geometry depth-

prepass, where the depth buffer is filled. This 

is then sampled, and used to reconstruct the 

position in view space of each pixel.  

 

The lighting stage then iterates through the 

lights, each of which have a unique index, 

and decides if the light affects that viewspace 

position. If the position is affected by a light, 

the index of that light is stored in a Light-

Index buffer. 

 

During the geometry rendering stage, the 

pixel stage samples the light-index buffer to 

detect which lights affected the geometry, 

and uses the light index to look-up the light 

properties in light data textures. The light 

data textures contain data such as; the 

position, colour and attenuation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1.1      

Example pipeline proposed by Damian Trebilco 

  

Depth only geometry 

pass 

Light contribution 

index packing  

Geometry pass 

Light index texture 

Post-Processing 

 



11 
 

 
 
Figure 3.1.2  

Example of Light Indexed Deferred Rendering 

(Courtesy of Damian Trebilco) 

 

Unfortunately, as the index is stored per 

pixel, the index can be overwritten by a 

later light which also affects the geometry.  

 

(Trebilco 2009) derived a solution whereby 

the light index of four lights is packed into 

the texture’s R,G,B and A channels, 

however this still means only four lights 

can contribute to a single pixel’s lighting, 

unlike standard deferred shading where the 

number of effective lights per pixel is not 

bound by the storage method. 

 

 

2.3.2 Light Pre-Pass Deferred Rendering 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.2.1  
Example pipeline proposed by 

Wolfgang Engel 

 

 

Wolfgang Engel (2009) introduced the concept of the light-

pre-pass renderer as a solution to minimize the size of the G-

Buffer. If lighting is calculated prior to geometry rendering, 

material data does not need to be stored, as this can be 

applied during the post-lighting geometry stage. This results 

in the light pre-pass concept having greater material 

flexibility than the standard deferred shading concept. 

 

Where a standard deferred shading renderer would typically 

store the final light contribution for each pixel in the Light 

Buffer (L-Buffer) before combining the L-Buffer with the G-

Buffer, Engel (2009) proposes storing light properties as 

terms of the lighting calculation. As this approach does not 

complete the equation, but outputs the lighting terms, the 

production of the L-Buffer requires less processing.  

 

The original technique proposed by Engel (2009) only uses a 

single texture and does not store a specular component, as the 

lighting properties require four values to be stored 

independently. As the specular component should ideally be 

combined with the lighting buffer, an extra texture to store 

specular properties will be needed.  

 

Applying the specular term to the fourth channel of the 

texture allows the diffuse and specular terms to be stored 

together, at the cost of the specular terms not modelling 

realistic specular lighting perfectly (Engel, 2009). 

 

 

Pre-lighting geometry 

pass 

Lighting stage 

Post-lighting geometry 

pass 

Post-Processing 

 

G-Buffer 

L-Buffer 
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Figure 3.2.2 Light Pre Pass rendering used in Blur. 

 

The light pre-pass concept allows the calculation of different lighting models to be evaluated 

at the post-lighting geometry stage and so allows further flexibility in material types. The 

concept could be adapted to store a closer approximation to the specular term, including 

specular light colour, however this would require six channels, three for diffusive properties 

and three for specular. 

 

2.3.3 Inferred Lighting 

 

Scott Kircher and Alan Lawrance (2009) present an extension of the Light Pre Pass concept. 

Utilizing the result of separating the lighting from the material and geometry stages, Kircher 

and Lawrance proposed that calculating lighting at a different resolution to the final render is 

possible with minimal visual artefacts. By calculating the lighting for a texture at 60% the 

size of the final rendered image, 40% of the lighting calculations need not be calculated. This 

optimization allows for more lights, or for the processing to be used elsewhere.  

 

Unfortunately, during up-scaling the light texture when sampling at the final geometry stage, 

visual artefacts appear where the edges of rendered polygons lose definition. 

 

 

 
Figure 3.3.1 

Example artefacts due to up-scaling the light buffer (Top). 

Using the DSF to solve this issue (Bottom). 

(Image courtesy of Kircher, S. and Lawrance, A.) 

Scott Kircher and Alan Lawrance 

(2009) propose using a Discontinuity 

Sensitive-Filter (DSF) applied to the 

lower resolution image as an effective 

edge-detection between discontinuous 

polygons. This filter technique requires 

a unique object ID and polygon ID to 

be generated for the geometry and 

stored per vertex. The DSF decides if 

two pixels are edges if their IDs do not 

match.   

When combined with the up-scaling of 

the L-Buffer, this solution solves many 

of the artefacts.  
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Inferred lighting has the potential to require less computation and thus perform faster than 

Light-Pre Pass implementations of the same resolution, as the resolution of the L-Buffer can 

be scaled down (Brown, 2009). 

 

Developing the work of David 

Pangerl(2009), lighting for four layers of 

semi-transparent geometry can be calculated 

using a stippled pattern when writing the 

geometry to the G-Buffer.  This pattern can 

then be reversed at the final geometry stage 

to re-produce the four layers of transparency 

with lighting, using the DSF (Kircher, 

Lawrance, 2009). This is an elegant solution 

to the transparency problem deferred shading 

renderers typically suffer from. 

 

 
 
Figure 3.3.2 

Example of stippled pattern when rendering semi-

transparent geometry (Left), and the transparency 

solved using the DSF (Right). 

 

2.4  Conclusion 

Rendering a scene with many dynamic lights takes less processing time when using a 

modified deferred shading pipeline over standard forward rendering. Moreover, it’s possible 

to increase flexibility of materials – and lighting models, by deferring lighting calculations to 

a later geometry pass, as shown with the Light-Pre-Pass and Light Indexed designs.  

 

Due to the limitation of a light overlap boundary, a Light-Indexed deferred shading 

implementation may not provide enough lighting accuracy when a scene contains many 

overlapping lights; yet it will perform much faster than a standard forward approach for the 

same scene, and require less video memory than a standard deferred shading solution. 

 

In a contrasting situation where the accumulated lighting must be accurate, and the target 

platform does not support multiple render targets, a Light-Pre-Pass implementation will 

perform faster than a standard deferred approach, with less visual errors where lights overlap. 

 

Finally, by lowering the resolution of the light buffer and using a smart edge-detection filter, 

lighting calculations can be performed on fewer pixels and thus increase performance, at 

slight accuracy cost. This concept could equally be applied to the standard deferred approach, 

along with the Light-Indexed approach. 
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III Deferred Shading using Light-Pre-Pass 

 

3.1 Section Introduction 

Dynamic multi-light rendering has been a major issue to consider when architecting many 

real-time 3D rendering systems. With the introduction of deferred shading into industry-

leading game engines, deferred shading has increased in popularity as the core modern multi-

light solution. This sections presents how Light Pre Pass deferred shading was implemented 

in the project. 
 

3.2 The Light-Pre-Pass Pipeline 

The Light-Pre-Pass renderer modifies the standard deferred shading pipeline to increase 

material flexibility and minimize bandwidth issues. Where the standard deferred shading 

pipeline requires all material data to be output at the geometry stage and stored in the 

geometry buffer, in the light pre pass pipeline, only the data required to complete the lighting 

equation is required.  

 

At the lighting stage in the pipeline, the contribution of each individual light source is 

calculated and accumulated into the light buffer. It is common for the light buffer to contain 

both diffuse and specular contributions to the light equation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.2.a Rendering pipeline in Duality Engine 

 

 

In the final stage, which is a 

standard forward shading 

geometry pass, the final lighting 

values for each pixel can be 

sampled from the light buffer, and 

either contribute, or not, to the 

final pixel colour. 

 

As the final geometry stage is 

simply a forward shading pass, 

additional lighting can be 

calculated in the standard way. 

This can be useful in situations 

where the data required for the 

lighting stage isn’t available, and 

so the data in the light buffer will 

be incorrect. This is common when 

rendering semi-transparent 

geometry, as only one layer of data 

can be stored in the geometry 

buffer. By using this forward pass 

to additionally send extra light 

data, transparency issues with 

standard deferred shading 

implementations can be minimized 

with the light pre pass pipeline. 
 

Pre-Lighting Geometry Stage 

Geometry Buffer 

Lighting Stage Light Data 

Scene Geometry 

Light Buffer 

Post-Lighting  

Geometry Stage 

Scene Geometry 

Materials 

Rendered Scene 
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3.3 Design 

Whilst the layout of the Geometry Buffer and Light Buffer aren’t as essential to the light pre 

pass design to the standard deferred shading design, they still required consideration and 

planning for optimal performance. 

 

3.3.1 The Geometry Buffer 

 

As the necessary terms required to complete the standard lighting equation are position and 

normal, these were required to be stored in, or be calculated from the data in the G-Buffer. 

Instead of storing the position data for each pixel, the position can be recalculated by 

reprojecting the depth values, and transforming them from view space to world space.  

 

As DirectX 10 through DirectX 11 allows sampling of depth stencil buffers, the depth value 

wasn’t required to be output to an additional render target. Outputting to multiple render 

targets is one of the core bottlenecks in standard deferred shading implementations. This was 

an issue with the early DirectX9 prototype, which used a deferred shading pipeline, rather 

than the light-pre-pass pipeline. 

 

The ability to read the depth stencil buffer and reconstruct the world position of a pixel using 

the depth, allowed the G-Buffer structure shown in figure 3.3.1.a to be used. 

 

 

  

 

 

 

 
Figure 3.3.1.a  G-Buffer layout used in the renderer 

 

As the Duality Engine was initially designed for low to mid-level hardware, the texture 

formats used in the G-Buffer were R8G8B8A8. This worked, but produced visible errors 

where the lighting calculations would produce block-shaped patches as shown in Fig 3.3.2.a. 

To remove this visual artefact, a higher precision floating point texture format was used, 

R16G16B16A16.  

 

 

 

Figure 3.3.2.a   
 

Left: Block-shaped lighting issue 

when storing normal in an integer 

format texture. 

 

Right: Issue solved using floating 

point texture 

 

 R G B A 

Texture 1 Normal X Normal Y Normal Z SpecularPower 

Texture 2 Depth Depth Depth Depth 
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Changing the texture to a higher precision format meant the float inaccuracies were 

minimized; however this was not optimal for low-end hardware, as higher precision texture 

formats may not be supported.  

 

Additionally when storing the normal, as the floating point texture couldn’t store the sign of 

each value, each value became unsigned, producing errors. It was required to pack the values 

into the range 0 to 1, rather than the unit length range of -1 to 1 for each component.  

 

The design of the G-Buffer and the rendering pipeline differs from the designs presented by 

Engel (2009). Where Engel suggested deferring the completion of the lighting equation to the 

final stage, the post lighting geometry stage, the renderer in the Duality Engine completes the 

lighting equation at the lighting stage. This however, means that more data needs to be stored 

in the G-Buffer, in particular the specular power of the material. In addition, only one lighting 

model is supported at the lighting stage, the phong model discussed in chapter 4, section 2.1.  

 

 

3.3.2 The Light Buffer 

 

It was necessary to store the diffuse lighting contribution of each light, so that materials can 

complete the equation in the final stage. The diffuse lighting contribution was a three-float 

colour value, calculated for each light and accumulated for all lights. As the light buffer 

resource was a four-float format, an additional value could be stored in the alpha channel. 

However, the specular component was still required to be stored, as usually materials have 

independent diffuse and specular colour values.  

 

There were two solutions to this storage problem, either an extra texture buffer could be 

created to store the specular contribution, or the specular contribution could be packed into 

the final value of the initial buffer. 

 

 

 

 

 

 
Figure 3.3.2.a Specular contribution stored as single value in last channel of light buffer.  

 

 

 

 

 

 

 

 
Figure 3.3.2.b Specular contribution stored as full colour in additional texture. 

 

As storing the specular in an alternate texture would require either rendering to multiple 

render targets or using a two-pass approach, it would not only require more memory, but it 

would also require more processing. However, this would allow the specular colour to be 

stored independent of the diffusive colour.  

 

 R G B A 

Texture 1 Diffuse (R) Diffuse (G) Diffuse (B) Specular strength 

 R G B 

Texture 1 Diffuse (R) Diffuse (G) Diffuse (B) 

Texture 2 Specular(R) Specular(G) Specular(B) 
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Figure 3.3.2.c Storing the specular contribution in 3 channels (left), versus storing the specular contribution 

in 1 channel (right). Notice the loss of colour in the red specular highlight. Image courtesy of Crytek. 

 

It was decided, that for the purpose of this renderer, efficiency had precedence over accuracy 

in this situation. This allowed the light buffer to remain as a single resource, and also meant 

multiple render targets weren’t required. 

3.4 Implementation 

3.4.1 Pre Lighting Pass 
 

The pre lighting pass was implemented to fill the G-Buffer with the necessary data to 

complete the lighting stage.  Each material which later used the deferred lighting calculated at 

the lighting stage was required to output the normal in world space and the depth when 

rendering the pre-pass. This was implemented by ensuring effects which would later sample 

the light buffer contained a technique labeled “pre”. This technique would only need to 

output the world space normal, as the depth was read from the depth stencil buffer.  For some 

materials, this was just directly writing the normal vector streamed into the pixel stage. 

However, for other materials which modified the normal at a pixel level, such as normal and 

parallax mapped materials, the modified normal would need to be written. As there was no 

way to ensure this from the engine’s perspective, it was assumed the pixel shaders output the 

correct normal values for lighting. 

 

3.4.2 Lighting Pass 
 

During the lighting stage of the pipeline, the contribution of each light source is accumulated 

in the light buffer. To calculate a light source’s influence on a given pixel, a pixel shader is 

executed. For every pixel to be processed, geometry must be rendered which encapsulates 

these pixels. This task could be performed on the CPU by modifying individual pixels in the 

light buffer; however this task is more suited to the GPU. 

 

To complete the lighting equation, data is needed about the surface the light comes in contact 

with. As described in section 3.3.1, this data is stored in the G-Buffer which can now be 

accessed at the lighting stage. By sampling the G-Buffer at the location of the pixel currently 

being processed, the data required for that pixel can be accessed, and the equation completed. 

 

As the position in world-space of each pixel was not stored in G-Buffer, the position was 

reconstructed using the depth buffer, and the inverse of the camera’s view projection 

matrices. This process is described in chapter 7, section 2.3. Once the world space position is 

calculated, the lighting equation can finally be complete, as the world-space normal is stored 

in the G-Buffer. 
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During the lighting stage, only one lighting model is used; Blinn-Phong, and the lighting 

equation is completed at this stage. The original design for light-pre-pass by Engel (2009), 

calculated the sum of common terms, which could then be used in the forward pass (see 

section 3.4.3), to complete the equation. Whilst Engel’s design allows the use of a 

combination of different lighting equations during the forward pass to complete the lighting, 

the lighting stage in the renderer limits this to Blinn-Phong and only stores the result of this 

calculation. This results in the lighting stage being slightly slower than usual, but with the 

forward geometry pass being a lot faster. Finally, to accumulate the result of the lighting 

equation, additive blending is used when rendering the geometry which encompasses the 

pixels. 
 

3.4.3 Forward Pass 

 

After the lighting pass, the scene is rendered again, using a traditional render of the materials. 

As the lighting has already been calculated, the shaders can simply sample the light buffer at 

the same pixel location to acquire the accumulated lighting for that pixel. By rendering the 

scene again, new data can be gathered in the usual methods for the materials without 

extending the G-Buffer. This allows the light pre pass renderer to be more flexible when with 

respect to materials. Additionally, as the post-lighting geometry pass is similar to the 

traditional render pipeline, more data can be passed to the material. This data could be light 

data which is used by the material in interesting lighting models not used at the lighting stage. 

In example, the Fresnel term discussed in chapter 4, section 2.2.  

3.5 Conclusion 

Implementing the light-pre-pass pipeline provided rendering capabilities of large numbers of 

dynamic lights in a scene, by separating the lighting from the scene geometry. Where 

traditional deferred shading stores the material data in the G-Buffer, the light-pre-pass 

pipeline used an additional rendering pass to gather new data to calculate the final colour of 

each pixel. 

 

Only the specular strength was stored in the light buffer, rather than the specular colour 

values. This optimisation allowed for faster light accumulation, as the lighting shaders did not 

need to output to two buffers. However, this optimization does not reflect reality entirely, and 

this leads to unrealistic lighting where the specular colour and diffuse lighting colour would 

be different. In addition, instead of storing the lighting terms in the light buffer, the 

completed result was stored. This meant the lighting model used to complete the lighting 

equation needed to be defined at the lighting stage. As different lighting models can vary on 

the number of input variables, this implementation of different lighting models would soon 

suffer from the same issues as deferred shading, where the G-Buffer is increased in size to 

accommodate for more data. To improve on this, the terms for the equation could be stored, 

as shown by Engel(2009), with the equation resolved in the forward pass. This would allow 

greater material flexibility in terms of the lighting model used. 

 

As the implementation of the light pre pass pipeline in the Duality Engine doesn’t use 

multiple render targets, the renderer should be able to support low-end hardware and certain 

integrated chips, without intense modification of the implementation. This means, that with 

this implementation a larger audience can use this software. This would be advantageous in a 

commercial situation. 
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IV Lighting and Shadows 

 

4.1 Section Introduction 

Lighting plays an important role in graphics applications; it can draw the viewer’s focus onto 

important objects in the scene, and enhance realism. Different lighting models can be used in 

different situations, with some lighting models providing fast approximations over physical 

correctness. Dynamic shadows also enhance the realism of a scene, and provide the viewer 

with visual information about the proximity of objects. 

 

4.2 Overview of Lighting Models 

4.2.1 Blinn-Phong Lighting 

 

The Blinn-Phong lighting model was used as the primary shading model during the lighting 

stage described in chapter 3, section 4.2. The Blinn-Phong shading model is composed of 

three terms; ambient, diffuse and specular.  

 

 

                    
 
      where: 

     is the ambient term 

          is ambient lighting colour 

          is material colour 

 

 

The ambient term is a constant value which 

approximates the average brightness of the 

scene, and the light reflected from other 

objects. The ambient term is usually constant 

throughout the scene, however some 

implementations define materials having an 

ambient colour  (Schüler, M., 2009). 

 

 

   (      )                      
    
      where: 

               is the diffuse term 

   is the world-space normal 

      is the direction to the light 

         is the light’s colour 

                   is material colour 

 

 

 

The diffuse term is an approximation of the 

reflected light being scattered. The diffuse 

term is usually accompanied by a colour 

representing the absorption of light waves, or 

efficiency of reflection. 

   (   )
                   

 
      where: 

              is the specular term 

             is the world-space normal 

             is the half-way vector between the direction    

           to the light and the direction to the camera 

                   is the light’s colour 

                   is material colour 

              is the material’s specular intensity 

Finally the specular term also represents the 

reflectance of light waves, but with much less 

scattering than the diffuse term. The specular 

intensity can vary in reality between lights, in 

addition to materials, however, in this 

implementation only the material specular 

intensity was considered. Blinn modified the 

phong equation by using a halfway vector as 

shown on the left. This modification closer 

reflects reality (Schüler, M., 2009). 



20 
 

  

The lighting terms are brought together to complete the equation: 

 
   (               )  ((      )                     )  ((   )

                  ) 

     
or 

 

              
 

      

 
Figure 4.2.1.a:  

Blinn-Phong in Duality Engine: ambient, diffuse, specular, complete Blinn-Phong, respectively.   

 

 

4.2.2 Fresnel Lighting 

 

Fresnel lighting can be used 

to simulate the sub-surface 

reflectance of light. By 

comparing the viewing angle 

to the world-space normal, a 

value is created can be used to 

reflect the subsurface 

scattering of materials. This 

value is often combined with 

the reflection of the 

environment and can be used 

to simulate water (Akenine-

Möller, Haines, and Hoffman, 

2008). 

  

 
 

 

 

 

 
 

Figure 4.2.2.a – Fresnel lighting used in Super Mario Galaxy.  

 

However, replacing the environment with solid colour leads to a rim lighting effect which can 

be seen in figure 4.2.2.a and figure 4.2.2.b. This concept has been applied in a large number 

of recent games, from the Super Mario Galaxy series, to Team Fortress 2 and the Left4Dead 

series. 



21 
 

 

Figure 4.2.2.b Fresnel lighting used in Duality Engine. 

Right teapot with Fresnel term, compared with left teapot without Fresnel term. 

 

 

4.3 Directional Lights 

Light source 

Surface
 

Figure 4.3.a Illustration of directional light sources. The light 

source is infinitely far away, making the light vector parallel 

for all surfaces. 

Directional lights can be considered as 

being a light source of infinite 

distance to a surface, (Rabin, S., 

2008). As the light source is infinitely 

far away, the vector of separation is 

parallel for all surfaces. This results in 

light affecting the entire scene equally, 

disregarding shadows. 
 

 

When integrating directional lights with deferred shading, it was necessary to consider how 

the light contribution could be calculated for every pixel. The solution to this was to generate 

a quad which covered the entire viewport. This ensured that every pixel was processed when 

the quad was rendered. A quad was rendered for each directional light in the scene, 

accumulating the resulting light influence. This process is described in more detail in Chapter 

3 sub-section 3.4.2. 

4.4 Point Lights 

Light source 

Surface
 

Figure 4.4.a Illustration of point light sources. The 

light source has a finite position and emits light in all 

directions. The light vector is not parallel for all 

surfaces. 

Unlike directional lights discussed in section 

4.3, point lights have a finite position 

defined. As a result the vector of separation 

between the light source and surfaces is not 

the same, thus not parallel for every surface. 

As point lights are not of infinite distance, 

attenuation of the light strength is taken into 

consideration with the surface’s distance. 
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When integrating point lights with the deferred shading renderer, initially the contribution of 

each point light was processed for every on screen pixel – similar to directional lights. This 

was wasteful, as in most cases, a single point light would not contribute greatly to every pixel 

on screen. As the point light equation takes into consideration attenuation, if a point light 

source is far enough from the pixel’s world location, the actual contribution of that light will 

be unnoticeable. Similarly, if a point light source has a low brightness level then the light will 

contribute to distant pixels a lot less. 

 

 

 

 

 
 

 
 

 
Figure 4.4.b.  

Top, calculating lighting with 

fullscreen quad. 

 

Middle, calculating lighting 

with sphere mesh. 

 

Bottom, modified attenuation 

with sphere mesh. 

 

 

 

To solve this issue, instead of rendering a quad which filled the 

viewport for each point light, a sphere mesh was rendered at the 

location of the light. To accommodate for different levels of 

brightness in the lights, the sphere was scaled proportional to the 

brightness level. This introduced a number of visible artefacts 

where the lighting would naturally extend beyond the sphere’s 

radius, and create harsh edges in the silhouette of the sphere 

geometry. As shown in figure 4.4.b. 

 

This issue was solved by defining a maximum distance at which 

the point light’s influence would falloff to zero. This solution 

redefined the attenuation, and modified the lighting equation. 

While this solved the issue, the attenuation of the lights became 

unrealistic. For the Duality Engine however, this was acceptable, 

as efficient rendering is more important than ultra-realism. 

 

 

Rendering spheres in place of point lights also raised another 

visual artefact when the camera entered inside the light’s 

influence radius. The lighting would suddenly disappear as the 

geometry for the sphere was clipped against the near-plane of the 

frustum. It is very common in real-time graphics applications and 

games that the camera enters a light’s influence radius, and so this 

issue needed a solution. 

 

To solve this issue, front face culling was enabled when rendering 

the sphere geometry. This ensured that only the rear facing 

geometry would be rendered, i.e. the back surface of the sphere. 

From the camera’s perspective, this encompasses the entire 

volume of the light’s influence radius, from all visible angles, and 

allows the camera to enter the radius without the light 

disappearing. 

  

Unfortunately, as the front faces are not being rendered, but the 

rear faces are, this lead to errors where the light’s geometry would 

intersect standard scene geometry. This was due to depth checks 

the against the scene’s depth buffer. 

 

Whilst using the depth buffer to cull the light geometry and reduce lighting calculations was 

important, it was more important that lighting was constant throughout the scene. For this 

reason, depth testing was disabled when rendering point lights. 
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4.5 Spot Lights 

 

Light source 

Surface
 

Figure 4.5.a Illustration of directional light sources. 

The light source has a finite position and emits light 

within a cone in a given direction. The light vector is 

not parallel for all surfaces. 

Similar to point lights discussed in section 

4.4, spot lights have a finite position 

resulting in non-parallel light vectors for 

surfaces. Unlike point lights, spotlights only 

affect a cone region of the scene’s surfaces. 

This cone region is usually determined by a 

cone angle, the smaller the cone angle, the 

thinner the cone. 

 

 

As the cone angle was made dynamic for flexibility, this meant it would be difficult to simply 

place a cone mesh in place of spot lights as the geometry would need to be generated for each 

spot light which encompasses the lights influence. Because of this, spot lights are applied by 

rendering quads which fill the viewport. This issue could be solved, by generating the 

geometry at run-time at the geometry stage, before the pixel processing stage where the spot 

lights contribution is calculated. This optimization would decouple the processing of spot 

lights from the resolution of the output. 

 

Soft spotlights were calculated by extending the spot light equation to include an inner radius, 

the point at which the falloff would begin. The falloff was calculated by linearly interpolating 

between the inner radius and cone angle vector, by the distance to the light’s facing vector of 

the pixel. 

 

 
Figure 4.5.b. Soft edge spotlights in Duality Engine. Left: Spotlight with hard edge. Right: 

Spotlight with soft edge by interpolating between inner radius and outer radius. 
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4.6 Shadow Mapping 

4.6.1 Process Overview 

 

Shadows allow the viewer to perceive the spatial structure of a scene more accurately than a 

scene without shadows. By using shadow techniques, a scene can appear more realistic, and 

increase viewer immersion. One particular technique, known as shadow mapping was used in 

the Duality Engine. 

 

Shadow mapping, sometimes known as shadow texturing, is the process of creating a depth 

texture, and performing depth checks against this texture when applying lighting (Akenine-

Möller, Haines, and Hoffman, 2008). To find if a surface is occluded from a light source, a 

depth comparison with other scene geometry is required. The scene is rendered from the 

perspective of the light source, storing only the depth in a depth texture. A depth check is 

performed against the depth texture, using the distance of the current pixel to the light source. 

If the distance is greater than the depth stored, then the pixel is behind the occluder with 

respect to the light source’s perspective, and does not receive light. 

 

 

 
Figure 4.6.1.a  Illustration of the shadow mapping method, using 

depth checks to detect if a surface is hidden by an occluder 

Comparing the depth values of 

contact points on a surface with 

the depth values stored in the 

shadow map, determines if a 

contact point receives light from 

the light source. In this example 

shown in figure 4.6.1.a, contact 

point A has the lowest depth value 

to the light source, as there is no 

occluding geometry. However, for 

contact point B, the occluding 

geometry is preventing the surface 

from receiving light. 

 
 
 

4.6.2 Implementation 

 

The entire scene is rendered from the light’s perspective. For this, the scene would need to be 

transformed into the shadowed light’s local space, rather than world space. A unique 

combined view projection matrix was needed for each shadowed light source. These matrices 

were used in exactly the same process as with the camera’s combined view projection 

matrices discussed in chapter 7, section 2.2.  

 

Only depth is needed to perform the depth comparison, and so in an initial implementation, 

the scene was simply rendered to a depth stencil surface, and not to a render target. This 

produced some interesting incompatibility issues with DirectX11. It was discovered in 

DirectX11 that, when the primary render target is not set, the depth stencil buffer set must 

match the primary depth stencil surface size, otherwise the viewport is offset. However, by 
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enabling the primary render target, the depth stencil buffer set is not offset, and produces 

expected values. 

 

 
Figure 4.6.2.a Shadow mapping in Duality Engine.  

This image shows the toys casting many shadows from multiple light sources. 

 

At the lighting stage, when the light contribution for the shadowed light source is calculated, 

the distance of each pixel to the light source must be compared with the depths in the depth 

stencil buffer. For this, the position of each pixel must be transformed into the projected 

space of the light, to create a UV co-ordinate, and depth value. The depth stencil resource is 

sampled, using this UV co-ordinate, and finally the depths compared. With a pixel’s depth 

being higher than the depth value in the resource at the same location, the pixel is further 

away and occluded by other geometry. In the implementation, if a pixel is occluded, lighting 

calculations stop, and the lighting process for that pixel ends. This produces notable sharp 

edges along a surface between occluded and non-occluded pixels. 

 

4.7 Conclusion 

 

Different lighting models can provide varying levels of realism, and provide unique art styles 

to enhance a scene. Real-time lighting can be calculated with approximations to physical 

interaction of light and the environment, such as the Blinn-Phong lighting model. Lighting 

models can also be adjusted to create interesting non-realistic effects, such as with the Fresnel 

implementation. 

 

Although directional, point and spot lights were implemented; area lights are common among 

offline visualization and animation software, and with the separation of lighting from 

geometry as discussed in chapter 3- section 2, may be possible to implement without great 

modifications to the existing architecture. 

 

Shadows add more realism to a scene, making the scene layout more understandable to the 

viewer. By rendering a shadow map for each shadow casting light source and performing 

depth checks when calculating lighting, hard-edged shadows can be implemented. With the 

current implementation, a render target is set and rendered to, to ensure the depth stencil 

buffer values are correct. This is inefficient, and wasteful, as the data in the render target will 
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never be used. Calculating only the depth values, and not writing to a render target is an 

obvious optimization. 

 

Currently, the entire scene is rendered for each shadow casting light. This is inefficient as 

geometry which may never be influenced by the shadow casting light is still rendered. The 

shadow map creation could be improved by using a spatial partitioning system to determine 

which geometry to render, or manually specifying occluding geometry for individual lights. 

 

Finally, this shadow implementation could be further improved with the addition of soft 

shadowing techniques. To further enhance the realism of the scene, penumbra correct 

shadowing could be used, however this can be expensive (Gumbau, J. Chover M. and Sbert, 

M., 2010). Also, with the current implementation, only spot lights cast shadows, this could be 

extended to allow point lights to cast shadows, and using advanced shadowing techniques for 

directional lights. 
 
 

V Stereoscopic Rendering 

 

5.1 Section Introduction 

Traditional rendering only provides the user with one image of information per frame. By 

providing two images, the user can perceive the depth of the world in greater clarity, by 

understanding the parallax shift of an object presented in each image. This section provides 

an overview of the theory behind stereoscopic rendering and the implementation, along with 

filtering methods to ensure each eye receives only the image created specifically for it. 

 

 

5.2 Theory 

 

An issue with standard real-time visual applications is how immersive the experience is. For 

some situations, the level of immersion can be greatly enhanced by providing more 

information about the scene to the user, such as the depth of objects in the scene. While the 

distance of objects could be gathered from the resulting size of an object, the user won’t 

always know the scale of an object, for example, a small scaled object may appear the same 

size as a large scale object much further away. By providing unique views onto the scene for 

each eye, and ensuring each of these images is received by the correct eye, we can provide 

this extra depth information to the viewer. 

 

In reality, when a person wishes to focus on an object, their eyes converge onto a single 

point. In example, if a person were to hold an object about 2 feet away in front of the head, 

the eyes would converge inwards to focus on this object. If the person wished to look further 

into the distance at the landscape, the eyes would converge less, as the focus point is much 

further away. As the human brain interprets the level of convergence, the focal distance and 

the parallax of each object in the two images, the depth of the environment is understood. 
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Figure 5.2.a. Illustration of eyes converging at screen depth. 

 

 

 

As shown in figure 5.2.a, when a 

person focuses on an object, the 

eyes converge onto the surface 

distance to gather as much 

information as possible. Note the 

left eye converging to the right, and 

the right eye converging to the left. 

When viewing a normal flat image, 

the eyes will converge to focus on 

the screen at screen depth. 

 
Figure 5.2.b. Illustration of eyes converging beyond screen 

depth. 

 

 
 

When viewing distant objects the 

eyes converge to a lesser extent. 

This can be seen in figure 5.2.b with 

the eyes converging less than in 

figure 5.2.a. By suggesting to each 

eye to converge less, we can create 

the illusion of depth past the screen 

distance. This can be achieved by 

offsetting the image for the left and 

right eyes. By shifting the left eye’s 

image to the left, and the right eye’s 

image to the right, we can suggest to 

the brain to converging at this 

distance. This shifting is known as 

positive parallax, which simulates 

depth. 

 

 
Figure 5.2.c. Illustration of eyes converging in front of screen 

depth. 

When viewing closer objects 

however, the eyes converge much 

more, as shown in figure 5.2.c. We 

can suggest to the brain to converge 

the eyes in this manor by applying 

negative parallax to the two images. 

Negative parallax shifts the right 

image to the left, and the left image 

to the right. By using negative 

parallax, objects can appear to be 

closer than the viewing screen. 
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5.3 Implementation 

 

The initial implementation of stereoscopic rendering in the project, involved simply creating 

two view matrices and separating them on the camera’s local x-axis. As shown below:  

 

 

 
Figure 5.3.a Diagram showing 

the separation of view matrices.  

 

Separating the two matrices as shown, simulates the 

interocular separation of our eyes in reality. These matrices are 

then each used to render the scene. This provides two unique 

views onto the scene intended for each eye. The separation of 

the view matrices created negative parallax for all visible 

objects. This occurred because as the left view position moved 

to the left; the result appeared that the scene shifts to the right. 

This was similar for the right view position, and can be seen in 

figure 5.3.b. This negative parallax for all scene objects meant 

that the entire scene would appear to be in front of the screen.  

 

 

The level of negative parallax for each object 

in the scene was directly proportional to the 

depth of the object. Objects closer to the 

camera would produce a greater negative 

parallax than distant objects. With every 

object in the scene having only negative 

parallax, this became a very tiring 

experience. With the separation of the view 

matrices approaching the average interaxial 

of human-eyes at 6.25cm, this became 

intolerable.  

 
 

Figure 5.3.b. Diagram showing the resulting images 

of interocular separation 

 

 
Figure 5.3.c. Diagram showing the toe-in 

method  

 

To ensure that distant objects have positive parallax, 

the view matrices were rotated inwards on the local y-

axis of the view matrix. As shown in figure 5.3.c. This 

process, known as toeing, creates the illusion of distant 

objects being far away, as the positive parallax is 

increased. Unfortunately, as this parallax plane is not 

parallel to the screen, unnatural distortions appear and 

this method becomes tiring for close objects. 
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It was necessary to ensure that any parallax shifts to persuade convergence would need to be 

irrespective of depth, to account for the entire scene. By applying a positive parallax shift to 

the entire scene for each image, the apparent depth could be pushed back into the distance, 

ideally behind the screen’s distance.  

 

By using a user defined convergence value and shifting the entire scene in accordance to this 

value, this positive parallax shift was achieved. By shifting the objects in the left image to the 

left, and the objects in the right image to the right by half the convergence value, the parallax 

value was increased. 

 

   
Figure 5.3.d. Diagram showing how the convergence 

shift is applied 

 

 
Figure 5.3.e. Diagram showing the convergence shift 

applied at the pixel stage, resulting in artefacts. 
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Where: 

n and f are near and far distances 

t and b are top and bottom distances  

l and r are left and right distances 

The convergence shift was initially 

implemented at the pixel stage where the 

two images were being combined into one 

display-presentable image. However, this 

produced banding at the sides of the image, 

where there wasn’t enough visible data in 

the image to shift. This can be seen in the 

lower image of figure 5.3.d. As this was not 

a desired effect, the convergence 

transformation would have to be performed 

during the actual rendering of the geometry 

prior to the combination of the two images. 

By applying a translation to the x-

component of the view space position of 

each vertex at the vertex stage, geometry 

would be translated by the convergence 

value. This allowed the geometry which 

would previously be clipped to be included 

in the image. This method however, 

required every vertex in the scene to be 

transformed in addition to any transforms 

by the standard world, view and projection 

matrices. It also required every vertex 

shader to include code to include the 

convergence calculation, which would be a 

minor irritation for the shader developers. 

 

 

 

Instead, the convergence shift could be 

applied to the projection matrix, which in 

turn would transform all geometry in a 

scene. As the projection matrix was already 

being combined with the scene geometry, 

this would incur no extra cost when 

rendering geometry.  
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In actuality, the top and bottom terms can be ignored as only horizontal parallax is needed, 

and the convergence value set by the user can be used here:  

 

[
 
 
 
 
          
     

  
   

   

   

   
     ]

 
 
 
 

 

 

Where:  

c is the convergence value 

a is the aspect ratio 

 
This oblique perspective matrix can be used to translate the transformed vertices along the 

local axis, particularly in the x and y axis. However, as we can ignore the vertical parallax, 

we only need translate along the x axis. 
 
 

 
Figure 5.3.f.  Diagram showing the oblique perspective transform applied to the view matrices. The frustum for 
each view is translated horizontally to apply the convergence shift. 

5.4 Filtering 

In addition to creating both the left and right images, the two images much reach the left and 

right eyes of the user respectively, with minimal crosstalk. Crosstalk can be reduced by using 

filtering methods which ensure the eyes only receive the images for the eye they were created 

for.  

 

Anaglyph filtering separates the two images, by first assigning a particular light frequency for 

the left and right image, and then ensuring the user has lenses which filter only the specified 

light frequency.  As red materials don’t absorb red light, red light which passes through the 

material is more pronounced than other frequencies. This is similar for cyan. By ensuring the 

user has the red lens over one eye and the cyan lens over the other, it is possible to present 

two separate images to the eyes independently.  
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Figure 5.4.a Combined anaglyph 

image using simple channel gather 

technique.  Reference image 

provided under the creative 

commons license. 

 

 

 

 
 

Figure 5.4.b Combined anaglyph 

image using colour saturation prior 

to channel gather technique.  

Reference image provided under 

the creative commons license. 

A major issue with stereoscopic render but more precisely 

anaglyph filtering is retinal rivalry. Retinal rivalry occurs 

when the images presented to each eye are too dissimilar, 

and the brain attempts to calculate which image is real. This 

is likely to occur in simple implementations of anaglyph 

filtering as the left eye receives only one colour channel, and 

the right eye receives an entirely different colour channel. 

Even with this level of retinal rivalry, simple 

implementations of the anaglyph filter can lead to further 

problems. If simply gathering the red component of the left 

image for the left eye, and only gathering the cyan 

component for the right eye, objects of those specific colours 

may be lost in one of the two images. This would mean that 

one image would contain the object, and the other, would not 

– leading to retinal rivalry. This can be seen in appendix E. 

 

To combat this; when applying the filter, the images where 

saturated to greyscale before packing into the specific colour 

filters. This process is shown in appendix F. The resulting 

combined anaglyph image can be seen in figure 5.4.b. When 

viewed through anaglyph glasses, both the red filter and cyan 

filter receive the same brightness. This reduces retinal 

rivalry, and provides a more comfortable user experience for 

viewing 3D. Unfortunately, this means a loss of all colour 

information, which may be unacceptable for certain 

situations such as colour based puzzle games or games which 

use colour to highlight important interactive elements i.e. 

Mirror’s Edge. 

 

Retinal rivalry can be minimised by using a filtering method 

which allows both eyes to receive the images in full colour. 

An alternative technology to anaglyph filtering which allows 

this is the NVidia 3D Vision kit. The NVidia 3D Vision kit 

uses shutter-lenses to alternate between which eye can see 

the screen at any one point in time. However, this technology 

requires a display capable of supporting 120 Hz. The NVidia 

3D Vision kit was the initial target stereo hardware for the 

project, however the full stereo API for the hardware was not 

accessible, and this had to be replaced with anaglyph. 

Fortunately, this situation was accounted for early on at the 

planning stage and had minimal impact. 

 

5.5 Conclusion 

 

With the recent popularity increase with 3D entertainment, having an engine which can 

render real-time stereoscopic scenes efficiently can give a game a significant advantage.  

Stereoscopic rendering was a core feature of the Duality Engine. By rendering two images of 

the scene instead of one, the scene can be presented in stereo. To ensure the viewer received 
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the correct image in each eye, anaglyph filtering was used to separate the image. It should be 

noted, that any view independent processes, such as the rendering of shadow maps ( see 

chapter 4, section 6 ) , and GUI rendering ( see chapter 6, section 8)  was only rendered once 

per frame. 
 

The implementation of stereoscopic rendering could be improved by optimizing the render 

process, using methods such as rendering scene objects with minimal parallax shift once, or 

processing similar stages of the light-pre-pass pipeline at the same time for each image. In 

addition, known techniques such as screen-space reprojection could be used to remove the 

second render pass entirely. 

 

The Duality Engine while supporting 3D, only truly supports anaglyph filtering. This 

technology is considered outdated by most consumers, and can be uncomfortable for some 

viewers. However, the glasses are cheap to produce, and the process doesn’t require 

additional display hardware. This project could be extended to explore non-anaglyph filtering 

techniques, and experiment with shutter glasses technology. Shutter glasses would provide a 

richer user experience as full colour would be available, with minimal retinal rivalry. 

 
 

 

 

 

VI The Renderer 
 

6.1 Section Introduction 

Real-time graphics applications such as games, have at the core a renderer. This renderer is 

the main system designed to produce an image visualizing the simulated world. In real-time 

environments the implementation of the renderer is vital to the performance of an engine. To 

ensure the performance of the engine is as fluid as possible, the renderer must be well 

optimised and perform efficient rendering. This section presents the design and 

implementation of the renderer in the Duality Engine.  

 

6.2 Requirements 

 

A renderer capable of rendering 3D scenes in real-time was required to complete the project. 

The renderer needed to support the programmable pipeline, as the fixed pipeline does not 

support most of the techniques which were to be implemented in the project. The renderer 

also needed to be efficient, as stereoscopic rendering requires two images to be generated per 

frame instead of one. The renderer needed to support loading and rendering meshes contained 

within mesh files. In addition, the scene and assets used within needed to be dynamically 

loaded, as the scene may change after compilation. The final major requirement was material 

flexibility; this was an issue with the prototype as the materials were only confined to a select 

few. 
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6.3 Design 

 

The renderer was designed mainly around efficiency, and batching. As certain state changes 

can be expensive and cause bottle-necks; minimizing state-changes was considered 

throughout the design of the renderer. In example, by ensuring all the instances using a 

particular shader are rendered whilst that shader is set, the shader states do not need to be set 

as frequently.  

 

A batching order was decided which ordered the state changes from most to least expensive. 

The initial batch order is by effect. As effects contain numerous shaders, passes, techniques 

and other state changes within, these are expensive to set recurrently. In a naïve 

implementation where batching is not used and instances are simply rendered in the order of 

creation, the effect passes and all states contained would be set for every rendered instance. 

By sorting the instances by effect, this can be minimized to only set the effect passes and 

states once per effect. This can lead to a significant increase in speed as redundant state 

changes are minimised. 

 

The next batching order was batching by texture and material attributes. As a material can be 

described as a set of shaders, textures and attributes such as colour, a material stored the 

textures and attributes, while being linked with an effect which stored the shaders and states. 

By linking the materials to the effects, the effects could process the materials at render time, 

rendering any instances that used the materials. 

 

Next, an instance type was designed to link the materials to the geometry. The instance type 

would be created by the material, and linked to a sub-mesh. Thus, the next batching order 

was by sub-mesh. This would allow setting the necessary vertex and index buffers before 

rendering the sub-mesh. Finally, any instances which used this combination of material and 

sub-mesh would be placed into the instance type, with only the matrix of the instance to be 

updated between render calls. 

 

As the lighting is decoupled from the rendering of geometry (see chapter 3, section 2), light 

quantities and types need not be considered when designing the batch order, and so near-

perfect batching can be achieved. This solution provides material flexibility, and also space 

for improvements, such as instancing, as the only data sent between render calls is the matrix 

transform of the instance. 

 

With the use of materials, textures, meshes and effects, an individual resource manager was 

designed to manage each of these resource types, from creation to destruction. The resource 

managers were designed to enable searching through the resources to find particular 

resources of given names and incrementally iterate through each resource also. This was 

designed such that when linking resources together, for example linking a material with a 

particular effect, the task could be simplified to the developer using the engine. 

 

 

6.4 Implementation 

 

The renderer was implemented using DirectX11. This had unforeseen issues during 

development which aren’t present with developing applications with DirectX10. Firstly, there 
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is no D3DXMesh interface with D3D11. While mesh support would have been directly 

beneficial, this meant that the creation of and loading of vertex and index buffer data had to 

be done manually. Instead of wasting a long time developing mesh file parsers, the Assimp 

importer API was used. Additionally, as the Assimp importer can import different format 

mesh files such as .3ds, or .obj, this became a very beneficial choice. 

 

Another issue with D3D11 is sprite and font rendering have been removed in place of the 

new Direct2D API. Unfortunately, interoperability with this API from D3D11 is still 

inefficient, as surfaces are copied between the GPU and CPU. As the renderer was required 

to render dynamic text efficiently, a font rendering solution was required. Section 6.8 

elaborates on the implementation of font rendering. 

 

 

The process of rendering the scene can be abstracted to form a tree structure illustrated in 

figure 6.4a, similar to a scene graph (VanVerth, J.M. Bishop, L.M., 2004). The tree helps to 

visualise the process, using the batch order discussed in the design in section 6.3.  Using the 

structure of figure 6.4.a as an example, if instance “In1” was visible, the effect “E1” would 

be set, followed by the material “M1”, followed by the instance type  “It1” being set. The 

instance “In1” would then be rendered. If instance “In2” is also visible, as “E1”, “M1” and 

“It1” have already been set; the instance can simply be rendered without any additional state 

changes.  

 
 

Renderer

Effects:

Materials:

InstanceTypes:

Instances: In1 In2 In3 In4

E1 E2

M1 M2

It1 It2 It3

 

Process Order: 

 

1. Set effect E1. 

2. Set material M1.  

3. Set instance type It1. 

4. Render instance In1. 

5. Render instance In2. 

6. Set effect E2. 

7. Set material M2. 

8. Set instance type It2. 

9. Render instance In3. 

10. Set instance type It3. 

11. Render instance In4. 

 
Figure 6.4.a Abstracted tree representation of render process 

 

This tree structure can be derived from the implementation as; each effect holds a list of 

materials, each material holds a list of instance types, and each instance type holds a list of 

instances. To improve efficiency, and remove redundant state changes, branches of the tree 

were clipped if they didn’t result in an instance being rendered. This is further described in 

section 6.7.2. 

 

 

6.5 Scene Management 

The scene manager contained the scene hierarchy, and managed the creation of scene node 

objects, such as instances, cameras and lights. Methods were provided to update the 

hierarchy, whereby the transformations from local space to world space were calculated. 
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6.5.1 Scene Hierarchy 

 

The scene was stored using a hierarchy, in addition to a linear vector of nodes. This allowed 

iteration of the scene nodes, but also allowed the hierarchical transforms to be maintained. In 

example, the turret head of a tank should stay attached to the top of the tank, when the lower 

half of the tank moves, rather than become separated. By grouping scene nodes by a common 

parent, they can be grouped together and transformed collectively. This is a useful feature 

during scene organisation. 

 

By updating the base node with the world transform matrix, an identity matrix, the entire 

hierarchy is updated. With every node updating its own world transform, and then invoking 

the matrix update method of each of its children, the entire hierarchy is gradually updated and 

transformed into the world-space relative to its parent.  

 

The hierarchy was also used for culling during early development, as entire collections of 

nodes could be ignored against frustum checks if the parent failed to pass. This was optional 

for each scene node, as a scene node could either check its child nodes when culled, or ignore 

them. Frustum culling is further described in section 6.7.1. 

 

While the scene hierarchy is comparable to a scene graph only because of its hierarchical 

structure, it should be noted that the hierarchy can be composed of more than scene nodes. As 

cameras, lights and instances each have a spatial presence within the scene; they inherit from 

the scene node base type and as such provide the same node hierarchy features as the scene 

node. This allows them to be integrated into the hierarchy with ease. 

6.6 Resource Management 

Resources such as textures or shader files may be required by many entities in a game. If 

entities are allowed to load resources themselves, a single resource can be loaded multiple 

times, which is wasteful. If all entities requiring the same resource were to use only a single 

instance of that resource, be it a geometry file or other resource, this would reduce memory 

usage and increase caching. Resource management can be described as the creation and 

deallocation of resources and improving resource re-use. By allowing entities to request a 

resource from a resource manager, that resource can be shared between entities. 

 

In the Duality Engine there are four specific resource types, textures, materials, meshes, and 

effects. Each of these resource types has their own resource managers. Careful consideration 

was required when designing the managers, as they needed to create and load resources into 

memory, and allow searching through the loaded resources to find if a resource was available. 

In each of the managers, resources are stored linearly in an STL vector. While this allows fast 

traversal through the resources when required, this does result in delays when extending the 

vector size, however this delay is usually unnoticeable with low numbers of resources. 

Instead of using the linear storage structure, a dictionary structure could have been used. 

However, to meet the low resource quantities of the requirements, this was not necessary, and 

would provide minimal performance increase.  

 

It was considered to provide an interface for loading resources in a separate thread, this 

would allow the engine to update the game and entities whilst loading a resources. This 

would also allow for shorter loading screens as the resources could be loaded faster in a 
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multithreaded environment. This was not implemented however, primarily due to the 

difficulty of the task and available development time. Instead, resources are loaded 

synchronously, with callbacks to the engine to update the loading text when loading. 

 
 

6.7  Optimisation 

6.7.1 Frustum Culling 

 
Rendering objects which do not appear in the final frame is wasteful and highly inefficient. 

One simple method for detecting if an object is visible is frustum culling. The view frustum 

represents the visible portion of the world, and can be described using 6 planes. By checking 

an object against the view frustum, we can determine if the object won’t contribute to the 

final image. If an object definitely won’t contribute to the scene, it can be culled, and not 

rendered. These optimizations allow the processing of this object to be redirected elsewhere.  

 

Frustum culling was used in the Duality Engine, to improve performance and minimize 

wasteful render calls. By transforming the world space position of each instance into the 

projected view space of the view frustum, the resulting position can be simply checked 

against all planes by comparing the linear position values to the limits of -1 to 1. Using only 

this position however, meant that large instances such as a skybox, or large building would be 

culled if the origin was outside the frustum. This was incorrect, as the scale of the instance 

should be considered. To account for scale when checking the instances against the frustum, 

the radius of the sub-mesh used by the instance was gathered. This radius was calculated by 

finding the furthest vertex from the local origin, and using the distance of this vertex to the 

centre as the radius. 

 

In a scene with many thousands of instances, iterating through each instance and detecting if 

it is visible is inefficient. To optimize this, a flag can be set for all scene node types, which 

will cull all of the node’s children should that node be culled itself. This was implemented to 

allow for hierarchical spatial containers. In example, if a room contains 1000 teapots, and the 

room is not visible, then the 1000 teapots are also not visible. 

 

 

6.7.2 Minimizing state changes 
 

The render process can be abstracted to form a tree structure as discussed in section 6.4. 

When instances have been culled, and are no longer visible, state changes are minimised by 

removing branches from the tree which ultimately don’t lead to an instance. Removing these 

branches means that effects, materials, or instance types won’t need to be set, resulting in 

minimizing redundant state changes. 

 

To determine if an effect, material or instance type needs to be set, the tree is traversed. 

Firstly, each effect attempts to optimise each material, should each material be optimised out 

or the material list is empty, the effect won’t be set. During the material’s optimisation 

process, the material attempts to optimise each instance type. If each instance type used by 

that material is optimised out or the instance type list is empty, that material won’t be used. 

During the instance type’s optimisation process, the instance type checks if the instances have 



37 
 

been flagged as visible or invisible. If all instances are invisible, or the instance list is empty, 

the instance type won’t be set and is flagged as being optimised out. 

 

 

Renderer

Effects:

Materials:

InstanceTypes:

Instances: X X In3 In4

E1 E2

M1 M2

It1 It2 It3

 
Figure 6.7.2.a  Illustration of removing redundant state changes 

Optimised render process: 

 

1. Set effect E2. 

2. Set material M2. 

3. Set instance type It2. 

4. Render instance In3. 

5. Set instance type It3. 

6. Render instance In4. 

 

As presented in figure 6.7.2.a, if the instances In1 and In2 are not visible, the instance type 

It1 does not need to be set. As It1 is the only instance type in material M1, M1 is not required 

to be set, and finally, as M1 is the only material in effect E1 and doesn’t need to be set, E1 

isn’t required to be set.  

 

This process of removing the branches in the tree which don’t result in an instance being 

rendered saves a lot of redundant state changes. The result is only necessary state changes 

being performed between render calls. 
 

6.8 Font Rendering 

Font rendering capabilities were removed from DirectX11 in place of the Direct2D API. The 

most viable solution regarding implementation time and efficiency was to develop a text 

rendering system.  

 

To provide the functionality of rendering text, a 

bitmap image containing a character map was loaded 

into memory. This character map was a 16 by 16 

grid of each ASCII character in succession in a 

particular font typeface. By understanding the layout 

of the characters on the character map, a method was 

created to calculate the UV coordinates for a given 

character, which was then used by the text streams 

when rendering the text. 

 
 

Figure 6.8.a An example character map 

 

The text streams store an array of 256 characters. This length is long enough for most cases, 

with a fixed length for efficiency. A dynamic length buffer would require constant 

creation/deallocation of DirectX11 buffers, this seemed unnecessary as multiple buffers could 

be used instead. 

 

To render the text, a buffer is created which contains the location of each character along 

with width and height, and the UV coordinates. Colour is also stored. The buffer data is 
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streamed into the geometry stage, where the geometry shader creates a quad for each 

character, with correct UV mapping. The pixel stage then samples the character map using 

these coordinates, and combines the result with colour. This final colour is then blended with 

the final scene’s render. 

 

 

As each character may have different widths, 

using the same separation width for each 

character looks wrong, with large spaces 

between characters. To solve this issue, 

additional width data was loaded in and 

stored alongside the character map with the 

character data in the font type. This 

additional width information was used to 

correctly size each quad and offset each 

character’s placement. 

 

 
 
Figure 6.8.b Uniform width applied (top), individual 

widths applied (bottom). 

6.9 Conclusion 

 

This chapter presented how the core system of the Duality Engine, the renderer, was 

developed. As the renderer needed to render real-time dynamic scenes, it needed to be 

efficient at rendering. This main requirement was met by carefully designing an efficient 

batching system. This batching system allowed minimal state changes to occur between 

rendering instances, thus improving performance over a non-batched system. To further 

optimize the renderer, frustum culling was implemented for all scene nodes. This minimized 

redundant render calls where instances were not visible. As the culling affected all scene 

nodes and the renderer used the light-pre-pass pipeline ( see chapter 3, section 2 ), lights 

which were not visible within the frustum were also culled. This allowed redundant lighting 

calculations to be minimised.  

 

As instances could be marked not visible if culled, redundant state changes throughout the 

system were minimised if an instance was not visible. This was implemented by only 

applying state changes which would directly affect visible instances only. As this 

optimization was considered when designing the framework, implementation was simplified. 

 

Using DirectX11 was an interesting learning experience. As the API did not the support 

loading of meshes and mesh data, this needed to be implemented externally of D3D11. In 

addition, as D3D11 does not currently support font rendering directly, a font rendering 

system was designed and implemented. In a commercial environment, the benefits of using 

DirectX11 over DirectX10 for this project may not exceed the difficulties of development. 

However, as this has now been implemented, this renderer can be reused for future projects. 

 

Should there be additional time and resources on developing this renderer, efficiency could 

be improved greatly with the use of further culling techniques and partitioning schemes. 

Visual realism could also be increased with the introduction of advanced shadowing 

techniques, and advanced post processing techniques. 
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VII The Render Process 

 

7.1 The DirectX 11 Rendering Pipeline 

 

7.1.1  Input Assembler 
 

At the Input Assembler stage of the pipeline, 

the data read from the input buffers, 

specifically the vertex and index buffers, is 

assembled and generated into primitives 

types used in later stages of the pipeline. The 

primitives generated can be point lists, line 

lists or strips, or triangle lists or strips, with 

additional adjacency information if required 

at the geometry stage. These primitives are 

then streamed into the vertex stage of the 

pipeline. 

 

7.1.2  Vertex Stage 
 

The Vertex stage of the pipeline reads a 

stream of primitive data, processes a single 

vertex, and outputs this processed vertex data 

to the next stage in the pipeline. Since 

DirectX10.0, the vertex stage is entirely 

programmable using shaders, and no fixed 

pipeline process exists. One common use for 

the vertex stage is processing data which 

would be too costly to process at the pixel 

stage, which can then be acceptably 

interpolated. This can be illustrated with the 

use of vertex lighting. Vertex shaders can 

also be used to transform geometry in regular 

or irregular fashions, such as with animation 

and bone weighting, where the position of 

individual vertices is influenced by a 

collection of bone parameters. In most cases, 

vertex shaders are used to transform each 

vertex from local space to world space, and 

then from world space to projected view 

space.  
 

 

 

 

 

7.1.2  Hull, Tessellator and Domain Stages 

 

In DirectX11, additional pipeline stages have been added to increase the flexibility of the 
actions an application can make the GPU perform. These stages; the Hull Shader stage, the 

Input-Assembler 
Stage 

Rasterizer 
Stage 

Tessellator 
Stage 

Output-Merger 
Stage 

Vertex Shader 
Stage 

Hull Shader 
Stage 

Domain Shader 
Stage 

Geometry 
Shader Stage 

Pixel Shader 
Stage 

Stream 
Output 
Stage 

Memory resources 

Figure 7.1.a The DirectX 11 rendering pipeline.   
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Tessellator stage, and Domain Shader stage can be used for generating additional geometry 

using a process labeled tessellation. Some uses for tessellation, are to increase the geometric 

detail of a mesh using a displacement map. The displacement map is usually a two 

dimensional array with data comprising a height scalar and displacement vector. At the end 

of the domain shader stage, the new vertex data is streamed into the next pipeline stage, the 

geometry stage. These three additional stages however, are optional, with standard 

implementations which can be conceptualized as a miniature fixed pipeline.  

 

7.1.3  Geometry Stage 
 

The Geometry stage of the pipeline, takes as input entire primitives, optionally with 

additional adjacency information.  The geometry stage can be programmed using geometry 

shaders. Using shaders, the geometry stage can be programmed to generate vertices, and form 

primitives. An example of this is presented in chapter 6, section 9, with the generation of 

quads for each character in a string when rendering text. 

 

7.1.4  Pixel Stage 

 

The Pixel stage then processes each individual pixel composing the primitives. At this stage, 

the output from the vertex stage or geometry stage is interpolated for each resultant pixel. The 

pixel stage can be programmed using pixel shaders. These shaders must output a value to 

write to a render target, however that value may be zero. Pixel shaders are used to perform 

per pixel operations which would be to inaccurate at the vertex stage. In example, the Blinn-

Phong lighting model implementation presented in chapter 4, section 2.1, is calculated at the 

pixel stage. 

 

7.2 Overview of 3D Transformations 

 

When a mesh is created, each polygon is defined by a set of vertices. These vertices represent 

a point in space relative to the origin of the mesh. However, in games and dynamic 3D 

graphics applications, it is necessary, to have the mesh drawn in different places, and with 

different orientations than was defined when the mesh was created.  

 

7.2.1  Local to World Space 
 

The standard approach to placing and rotating a mesh within a virtual world is to transform 

each vertex position from local space into world space. By transforming each vertex position 

individually, the entire mesh is transformed as a whole. This can be achieved by combining 

the vertex position with a world matrix storing the orientation and position relative to the 

origin of the world. 

 

After this transformation, a mesh can be rendered in world space relative to the world origin.  

However, as the view into a scene is usually not from the origin of the world, with the view 

moving dynamically through the world, additional steps are required for a true dynamic 3D 

graphics application. 
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Figure 7.2.1.a Cube mesh in local space 
 

 
Figure 7.2.1.b Cube mesh in world space 

 

 

7.2.2 World to View Space 

 

To create the effect of a camera moving through the world, the meshes must be rendered 

relative to the camera. To do this, a view matrix must be constructed which is then combined 

with the world matrices of every mesh instance. The view matrix is the inverse of the 

camera’s world matrix. 

 

 

 

 
Figure 7.2.2.a Cube mesh in world space. Camera 

(red) in world space.  
Figure 7.2.2.b Cube mesh in camera space. Camera 

(red) in local space. 
 

 

7.2.3  Reconstructing World Space Position using Depth 

 

When rendering the scene, a depth buffer element is filled for each pixel. When depth testing 

is enabled, the value in the depth buffer is compared with the value for each pixel. If the 

depth test passes, the new depth overwrites the stored depth. A common use for this is to 

determine if a polygon is behind another polygon, so a resolution can take place to ensure the 

closest polygon is drawn. Each of the values stored in the depth buffer corresponds to a pixel 

location, which was initially determined by transforming a world space position into a 

projected view space position using a combined view projection matrix. As the screen-space 

position can be transformed by the inverse of the combined view-projection matrix, the 

original world space position can be recalculated. 
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The screen-space position can be described as four-component vector, with the x and y co-

ordinate ranging from -1 to 1, and the depth as the z value. As the original w value was not 

stored in the depth buffer, it must be recalculated. This can be calculated at the vertex stage, 

with the results interpolated for the pixel stage when reconstructing the depth. After the 

screen-space position is constructed, it must be transformed by the inverse view-projection 

matrix. This reconstructs the original world space position. 

 

 

VIII The Duality Engine 

8.1 Section Introduction 

Often, after a successful game has been developed, published, and distributed, a studio may 

wish to create a sequel to the game.  If the developers can reuse code used in the original 

game, they can distribute their time working on new features, and enhancing the game. By 

separating the core functionality of the code from the game specific code, the ability to reuse 

the code is increased. A game engine implements the functionality of the application which 

isn’t specific to one game. In example, the code to render a scene can be decoupled from the 

gameplay code. By reusing this non-game specific code, development time can be used 

elsewhere in future projects. 

8.2 Requirements 

 

The Duality Engine needed to be an API capable of creating a dynamic real-time interactive 

scene. The engine was required to support large quantities of dynamic lights. It was also 

required to render two images of the scene for stereoscopic rendering.  

 

It should be noted that the engine needed to be able to render more than one scene, as it will 

be reused in later projects. To render unique scenes after compilation, the scene data needed 

to be loaded in dynamically, along with any resources used to render the scene.  

8.3 Design 

 

The Duality Engine was primarily designed for programmers with some existing experience 

with graphics engines. Due to it being an engine, reusability played a key role in the design 

and implementation, with the purpose of the engine not being to create a single demo, but to 

be used for future projects also. 

 

Instead of designing the core engine class to contain all of the functionality of the engine, 

modules were created to focus on core aspects of the engine. In example, the entity manager 

was designed to create, update and remove entities from the scene.  The window manager 

was designed to handle the initialization and update of the application window, including 

processing and forwarding windows messages to other modules. The input manager was 

designed to read user input from the keyboard, mouse and an optional four Games for 

Windows game controllers. The logger class was designed using the singleton design pattern, 

with the intent of allow log messages to be created and stored if an error occurs within the 

engine. 
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As the engine was designed not just for the scope of this project, but for other programmers 

to use, the interface was kept simple, providing access to the underlying managers, and 

common procedures such as initialization, shutdown and updating the engine. 

 

8.4 Implementation 

Following the design of the engine, and learning from past experiences of developing the 

prototype, the Duality Engine was developed. The implementation accurately reflected the 

core design of the engine, with additions made for flexibility of materials and additional 

features, such as shadowing. 

 

The Duality Engine is composed of many different APIs and libraries. As discussed in 

section 8.7, TinyXML was used for XML parsing. As discussed in chapter 6 section 4, 

Assimp importer was used to read the geometry information from files. The effect11 

framework was also used primarily as an automated shader system, and the math library 

created by Laurent Noel was also integrated.  

 
To maintain visual feedback during long loading times, a simple callback function was 

implemented taking by parameter, a string containing a message to display. This combined 

with the start and finish loading methods provided useful information on the progression of 

loading. 

 

8.5 Entity Management 

 

Whilst using scene nodes to describe the position, orientation and scaling of a renderable 

instance; behavior cannot be captured with just this representation alone. By having an object 

which controls these scene nodes, complex behavior can be simulated, such as driving a car, 

or traversing a mountain. By applying behavior to these entities, the entities can then manage 

themselves with respect to positioning and controlling scene nodes, alongside interacting with 

the world. In the Duality Engine, the entity manager stores a collection of entity references. 

Entities can be created by the manager, with a unique ID generated for each entity. Upon 

creation of an entity, the unique ID is returned rather than a pointer to the entity object itself. 

This is to promote the use of the IDs over direct pointer access, which can lead to runtime 

errors if the pointer’s address value is incorrect. 

 

8.5.1 Entity Update 
 

Instead of updating the entity data in the main game loop, outside of the engine, the entity 

manager calls an update method owned by the entity base class. Passing through the time step 

for the engine, this allows each entity to be updated by the actual time, and should remove 

irregular speed issues on different machines where the processing speed is different.  

 

As each entity is individually updated, the complex behavior of entities can be managed by 

the entity itself, rather than relying on external method calls. This promotes better 

encapsulation and to a degree, code reusability.  
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8.6  The Logger 

During development it was required to create a logging system to log errors and unusual 

program behavior. The logger was particularly useful in release executable builds, where 

debug information was inaccessible. By logging error messages, such as a missing resource 

files, the errors could be solved efficiently without wasting time deciphering the root of the 

problem. 

 

The logger was implemented following the singleton design pattern (Rabin, S., 2008.) and 

was made available to all classes provided they include the logger header file. The logger can 

redirect log messages to the output window of the IDE, or to an event file. Outputting error 

messages to the event file was extremely useful during the testing stage and throughout 

development. 

 

8.7 XML driven setup 

Using a data driven approach to scene setup and resource loading, increased the productivity 

during development, as the data can be read and resources loaded dynamically. This meant 

that should the scene change, the entire application didn’t need to be recompiled. This 

allowed scene to be altered externally at runtime. Using data driven setup however, meant 

that there is additional processing when parsing the documents and loading the resources, but 

the increase in the development speed negated this. 

 

When selecting the format to store the data, it was necessary to consider how the data would 

be changed. Initially, without the use of tools, the data would be changed manually in a text 

editor. This meant the format would need to be human readable. XML was used mainly 

because it is partially human readable, but also it can reflect hierarchical structures of data, 

which were used in the engine.  

 

There are many XML parsers written in C++, which are categorized into two types, event-

driven and document driven. With event-driven parsers, a callback is registered and called 

when a tag is opened or closed. With a document driven parser, the file is parsed and a 

hierarchical structure is generated which can then be traversed by the user of the parser. 

TinyXML is a document driven parser, and was used in the Duality Engine. TinyXML was 

used in preference over an event driven parser, such as Expat, as many callback methods 

would need to be generated with an event driven parser.  

8.8 Conclusion 

The Duality Engine was designed as a reusable graphics engine capable of rendering dynamic 

scenes.  As the targeted user of the engine is programmers with some experience of graphics 

engines, the interface was kept simple, though the core managers can be accessed to provide 

additional functionality.  

 

A simple entity system was implemented. The system updated all entities during each 

iteration of the game loop, and allowed direct method access. Direct method access may not 

be wanted in certain situations. An alternative to this would be messaging; this would 

decouple the entity classes, and minimize unwanted direct method access. Additionally, the 

entity behavior was hardcoded into each entity class. This engine could be improved in the 

future with the addition of entity scripting. 
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IX Testing 

 

To gain an understanding of the performance of the Duality Engine on different hardware, 

simple benchmarking was performed. The benchmark was performed on four machines with 

hardware of varying feature levels.   
 
 
 
 
 
 
Machine No 1. 
GPU: NVidia GeForce G210  
DXlevel: DX 10.1 
CPU: Intel Core 2 Quad (2.33Ghz) 
Ram: 4096MB 
OS:  Windows 7 Home Premium 64bit 
 

MachineNo. TestNo. 3D (anaglyph) Shadows Fullscreen FrameRate 

(average) 

Render 

Time (ms) 

1 1    14.3 69.93 

1 2    9.8 102.04 

1 3    10.0 100.00 

1 4    13.2 75.76 

1 5    7.2 138.88 

1 6    7.2 138.88 

1 7    6.0 166.67 

1 8    7.1 140.85 

 
 
 
 
 
 
 
 
Machine No 2. 
GPU: NVidia GTX 460 
DXlevel: DX 11 
CPU: Intel E8500 Core 2 Duo (3.16Ghz) 
Ram: 4096MB 
OS:  Windows 7 Professional 64bit 

 

MachineNo. TestNo. 3D (anaglyph) Shadows Fullscreen FrameRate 

(average) 

Render 

Time (ms) 

2 9    153.0 6.54 

2 10    135.1 7.4 

2 11    120.5 8.30 

2 12    130.0 7.69 

2 13    82.6 12.11 

2 14    78.2 12.79 

2 15    68.5 14.60 

2 16    66.3 15.08 
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Machine No 3. 
GPU: ATI Radeon HD 5770 
DXlevel: DX 11 
CPU: AMD Phenom II X3 720 (3.2Ghz) 
Ram: 4096MB 
OS:  Windows 7 Professional 64bit 

 

MachineNo. TestNo. 3D (anaglyph) Shadows Fullscreen FrameRate 

(average) 

Render 

Time (ms) 

3 17    138.2 7.24 

3 18    135.4 7.39 

3 19    98.3 10.17 

3 20    91.0 10.99 

3 21    75.1 13.32 

3 22    72.2 13.85 

3 23    49.2 20.33 

3 24    44.5 22.47 

 
 

Machine No 4. 
GPU: NVidia GeForce 9800GT  
DXlevel: DX 10 
CPU: Intel E8760 Core 2 Duo (3.06Ghz) 
Ram: 4096MB 
OS:  Windows 7 Home Premium 32bit 

 

MachineNo. TestNo. 3D (anaglyph) Shadows Fullscreen FrameRate 

(average) 

Render 

Time (ms) 

4 25    76.5 13.07 

4 26    85.9 11.64 

4 27    64.0 15.63 

4 28    61.1 16.37 

4 29    38.2 26.18 

4 30    42.3 23.64 

4 31    36.8 27.17 

4 32    36.5 27.40 
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X  Evaluation 

 
 

Upon reflection of the entire development of the project, the problems highlighted at the start 

of the project have been solved. The main problem of large quantities of dynamic lights has 

been solved with the efficient implementation of the light pre pass pipeline. In addition, 

stereoscopic rendering has been implemented with anaglyph filtering. Finally, the Duality 

Engine was developed as a graphics engine capable of rendering dynamic scenes. The engine 

is fully scalable, and can be extended upon in the future to support more advanced features, 

and optimisations. 

 

Having developed the standard deferred shading pipeline in an early prototype, valuable 

knowledge was gained about the entire process of deferred shading. The techniques learnt to 

solve irregular issues from the prototype, were carried forward into the development of the 

main engine, such as the optimization of rendering point lights by replacing the quad with a 

much smaller sphere. In addition, by implementing the standard deferred shading pipeline, 

the material flexibility problems were highlighted early on, this allowed a newer alternative 

algorithm to be selected, the light-pre-pass pipeline. This solved the material flexibility 

problem. Developing the prototype also helped with the architectural design decisions for the 

Duality Engine, and focused the architecture around the batching system for efficiency. 

 

Choosing DirectX11 as the primary graphics API, was a learning experience in itself. At the 

start of the project, the documentation on the API was minimal, provided almost no 

information on functions and classes.  In addition, common DirectX9 features had been 

removed from the DirectX11 API, such as loading meshes, and font rendering. These 

challenges were overcome throughout the project, and developing a text rendering system has 

provided knowledge unforeseen at the start of the project.  
 

Having completed the project, it’s apparent that the choice of DirectX11 over DirectX10 was 

immature, as no DirectX11 specific features were necessary in the implementation of the 

light pre pass pipeline or the stereoscopic rendering. Having said this however, the challenge 

was welcomed, and if the project could be restarted, DirectX11 would still be used again. 
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XII Appendices 

 

Appendix A: Project Proposal 

Department of Computing Degree Project Proposal 
 
Name:  Thomas Russell   Course:  Computer Games Development   Size: double 
Discussed with (lecturer): Laurent Noel      Type: development 
 
Previous and Current Modules 
Mobile Computing 
 
Problem Context 
The standard forward rendering technique to render a 3D scene in real-time limits the number of dynamic 
lights to a fairly low number. In some cases however, it is required to have a large quantity of dynamic lights. 
For example, the headlights of moving cars would have an effect on the environment in a city scene at night. In 
conjunction to this, dynamic shadows cast from each individual light are not viable as a real-time solution with 
current technology. A deferred lighting approach will allow for multiple dynamic lights, however as the 
materials for each pixel are stored, this can lead to large memory usage. 
 
The Problem 
I intend to design a 3D graphics engine capable of supporting large quantities of dynamic lights. As traditional 
deferred shading suffers from a large memory usage, the light pre pass pipeline will be implemented. 
Potential Ethical or Legal Issues 
None 
 
Specific Objectives 

- Design the architecture of the system to support multiple dynamic lights. 
- Develop an initial prototype to test feasibility of the project. 
- Redesign the architecture of the system around newly acquired knowledge. 
- Write a literature review discussing relevant literature 
- Implement the new design. 
- Write a report on the project. 

 
The Approach  
 

- The initial stage will be creating a prototype to see if the project is feasible. The prototype will 
use a simple deferred lighting technique of separating material properties for each pixel and 
calculating the effect of lights after all scene geometry has been processed. 

- The architecture will then be redesigned around the knowledge acquired from development of 
the prototype. Issues may arise during development of the prototype which halt further 
development, so understanding them whilst at the initial prototype phase will help to 
understand how to solve these issues later on. 

- The literature review will be written discussing relevant literature focussing on deferred shading 
techniques. 

- The actual design will then be implemented, or extended from the prototype. 
- The report will be written. 

 
These key activities will be done in the order shown. Documentation will be kept along the way.  
 
Resources 
Microsoft Visual Studio 2008 / Microsoft Visual Studio 2010 
Microsoft Office Visio 2007 
Microsoft DirectX SDK 
OpenOffice Writer 
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Potential Commercial Considerations 
None 
 
Estimated costs and benefits 
The main cost factors of the project come from the amount of time the developer will be working on it. The 
key benefits are that the software will be able to render a 3D scene with multiple dynamic lights with a fair 
level of realism. The graphics engine could be used to create simulation, visual representation or video game 
software, at a lower cost than if a company were to purchase and use a license for an external 3D engine.  
 
Literature Review Content 
Deferred Shading Techniques 
 
References 
Akenine-Möller, T. Haines, E. & Hoffman, N., 2008. Real-Time Rendering, 3rd ed. AK Peters.  
 
Nguyen, H., 2008. GPU Gems 3. Nvidia, Ch 19. 
 
Pangerl, D., 2009. Deferred Rendering Transparency. In Engel,W., 2009. ShaderX7: Advanced Rendering 
Techniques. Course Technology. 
 
Pharr, M., 2005. GPU Gems 2. Nvidia, Ch 9. 
 
Thibieroz, N., 2009. Deferred Shading with Multisampling Anti-Aliasing in DirectX 10. In Engel,W., 2009. 
ShaderX7: Advanced Rendering Techniques. Course Technology. 
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Appendix B: Literature Review 

 

Deferred Shading Techniques 
 

Thomas Russell, 

BSc (Hons) Computer Games Development 

 

Project: Real-time scene rendering with a high number of dynamic lights.  

Supervisor: Laurent Noel 

Second Reader: Gareth Bellaby 

21 April 11 

 

 

Abstract 

 

Decoupling the lighting calculations from the rendering of scene geometry using deferred shading, allows a 

dynamic scene to be rendered with full dynamic lighting in less time at the cost of higher memory usage. 

 

By performing a lighting stage before material processing, the memory impact can be minimized, with the 

benefits of full dynamic lighting and flexible lighting models per material, at a slight cost of extra processing.  

 

This extra processing can be minimized however, by using a lower resolution texture than the final render, and 

up-scaling whilst applying a smart edge-detection filter. 
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Introduction 
 

1.1 Context 

 

Rendering a scene with dynamic lighting in real-time is a core renderer feature for most modern real-time 

renderers. As pixel shading techniques increase in complexity, previous methods of calculating the dynamic 

light contribution on geometry are too slow for scenes with many lights due to pixel overdraw. In some cases, 

the light contribution is calculated by rendering the scene geometry in multiple passes and combining the 

lighting until the contribution from every light is calculated (Engel, 2009).  

 

In standard forward shading, due to the lighting being coupled with the geometry, the average time taken to 

render a single frame is directly proportional to the number of lights affecting the geometry and the complexity 

of the geometry (Hargreaves, 2004). 

 

For a scene with eight lights, a forward renderer would use a shader generated for that number of lights. 

Generating shaders for each material with each number of lights available soon suffers from combinatorial 

explosion. With twelve lights and four different material types, this would combine to be forty-eight different 

shaders for four materials. This does not also take into account different light types. This raises issues with 

architecting an optimized rendering system using batching, as this would require batching by the number of 

lights and light types to achieve a good batching system. 

 

1.2 Overview 
 

Using a deferred shading approach, a scene can be rendered in real-time with a high number of lights 

irrespective of scene geometry complexity (Valient, 2007). Section 2 presents the concept of the deferred 

shading approach, benefits of using deferred shading and known implementation issues. Section 3 presents three 

alternative solutions which develop the deferred shading concept.  

Deferred Shading 

 

 

2.1 The Deferred Shading Concept 
 

 

The standard forward rendering technique to render a 

scene using dynamic pixel lighting involves 

calculating the most influential lights and applying 

lighting when rendering geometry (Placeres, 2006). A 

common approach for applying many lights is to 

apply different shaders for each material for different 

quantities and types of lights. Due to the tight 

coupling between geometry, materials and lighting 

calculations, scene complexity is proportional to the 

number of objects combined with the number of 

applied lights (Hargreaves, 2004).  

 

 
Figure 2.1.1 An in-game night scene from 

GrandTheftAuto IV. All car headlamps and traffic 

lights are dynamic. Lighting is calculated using a 

deferred approach. 

 

An issue with performing lighting calculations when rendering geometry arises when new geometry is rendered 

over existing geometry. This overdraw impact can be lowered using a deferred approach.   

 

The deferred shading technique was first proposed by Deering (1988), though the technique wasn’t labelled 

“Deferred shading” until later (Hargreaves, 2004). By storing the data required to complete the lighting 

equation, the lighting can be decoupled from the rendering of geometry, this allows the lighting to be applied as 

a post-process (Placeres, 2006).  

 

The deferred shading concept is composed of three main stages: the geometry stage – where the scene is 

rendered and material data is stored, the lighting stage- where the lighting is calculated, and the composition 

stage – where the lighting is combined with the material from the geometry stage. 
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As the lighting calculation is removed from the geometry stage, the implication of overdraw is minimised, as 

lighting calculations won’t be wasted on pixels which don’t appear in the final render. This allows a higher 

number of lighting calculations per pixel than a standard forward renderer, and thus more lights. 

 

 

2.2 The G-Buffer 
 

The lighting stage requires the position data and normal data for 

each pixel to apply the lighting as a post-process. This data is 

gathered into a collection of textures during the geometry phase, 

known as the Geometry Buffer (or “G-Buffer”) to allow the equation 

to be completed at a later stage (Akenine-Möller, Haines, and 

Hoffman, 2008). 

 

Frank Puig Placeres (2007) proposed the G-Buffer structure shown 

in Figure 2.2.2 as an initial starting point for deferred shading. 

However, this structure does not store any material properties, such 

as the diffusive colour of the object, or how reflective the material is. 

Furthermore, the same lighting model must be applied to each pixel 

during the lighting stage (Engel, 2009). 

 

For instance, if the Blinn-Phong lighting model was used to 

construct the lighting accumulation, the entire scene would be lit 

using Blinn-Phong shading. This may not be desired, as different 

lighting models are suited to different materials, i.e. Minneart for a 

silk dress. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

Figure 2.2.1 
Deferred shading pipeline  (courtesy of 

Frank Puig Placeres) 

 

 

 

 

  

 

 

 

 

 

Figure 2.2.2 Example G-Buffer layout (courtesy of Frank Puig Placeres) 

 

 

To solve this problem, a value could be stored in either the position or normal texture’s alpha channel to indicate 

which lighting model to use, although these channels may be required to store material information as shown in 

Figure 2.2.3. 

 

  

 R G B A 

Texture 1 Normal X Normal Y Normal Z Scattering 

Texture 2 Diffuse Colour 

R 

Diffuse Colour 

G 

Diffuse Colour 

B 

Emissive 

Texture 3 Specular 

Intensity 

Specular 

Power 

Occlusion  Shadow amount 

Texture 4 Depth Depth Depth Depth 

  

 Figure 2.2.3  Example G-Buffer layout (courtesy of Shawn Hargreaves) 
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Figure 2.2.4 Example texture components of a G-Buffer; depth (upper left), normal (upper right),  

diffuse (lower left), specular intensity (lower right). (Courtesy of Shawn Hargreaves) 

 

 

 

 
 

Figure 2.2.5    
Example composition of lighting accumulation with G-

Buffer textures.(Courtesy of Shawn Hargreaves) 

 

 

To specify material attributes, the G-Buffer must 

contain more textures as demonstrated in Figure 

2.2.3 and Figure 2.2.4 with the addition of diffusive 

colours, specular properties and other material 

attributes. These material attributes are then 

combined with the accumulated lighting to create 

the final frame image as shown in Figure 2.2.5. 

 

The depth of each pixel can be stored rather than the 

position, as the viewspace and worldspace positions 

can be reconstructed using the depth (Hargreaves, 

2004). This allows a single value to be stored 

instead of three, so more material data can be stored 

in the texture by lowering the precision of the depth 

value stored. Shown in Figure 2.2.3. 

 

 

 

2.3 Issues with Deferred Shading 
 

As the lighting is decoupled from the rendering of scene geometry, all material attributes which directly affect 

lighting must be output to the G-Buffer (Engel, 2009). As a result the flexibility of materials is tightly dependant 

on the available memory of the platform. 

 

The G-Buffer is composed of several textures which are output from the geometry stage, so the platform must 

support Multiple Render Targets, otherwise the scene geometry must be processed for each texture (Engel, 

2009). Aside this requirement, as each texel must be written for each texture in the G-Buffer, deferred shading 

often suffers from a high fill rate requirement. Where a standard forward approach would merely output a single 

colour value, a deferred approach would output four sets of values per pixel. 
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Due to the G-Buffer storing the data per-pixel, only the closest fragment will be stored in the G-Buffer, which 

results in semi-transparent objects overriding the geometry data behind (Pangerl, 2009). For this reason semi-

transparent geometry is not stored when writing the G-Buffer. 

 

 

2.4  The Benefits of Deferred Shading 
 

The most noticeable benefit of deferred shading is the availability of high quantities of dynamic lights within a 

scene. Alongside this, popular post-processing techniques have the desired texture inputs from the G-Buffer to 

not require rendering the scene using multiple passes. Depth of field, ambient occlusion and fog can sample the 

G-Buffer textures without needing to gather new data. New graphics techniques such as soft shadows calculated 

in screen space also benefit from using these textures (Gumbau, Chover and Sbert, 2010).  

 

The lighting stage of deferred shading can also be interlaced with an existing forward renderer given the 

renderer supports a depth only pre pass. This was illustrated by Malan (2009) during the production of 

Crackdown, where the lighting for street lamps and car headlights were applied after the scene had been 

processed. 

 

Alternate Solutions 
 

The standard deferred shading concept stores material data at the pixel level and then calculates the accumulated 

lighting for each pixel using the material data. However, if the lighting can be calculated prior to rendering the 

geometry, the amount of data needed to bridge the lighting and geometry stage is minimised. 

 

 

 

3.1 Light Indexed Deferred Rendering 
 

Damian Trebilco (2009) proposed a solution to 

separate the lighting and geometry rendering stages; 

similar to standard deferred shading, but with light 

accumulation calculated prior to geometry rendering. 

 

Trebilco modified the standard deferred shading 

pipeline to include a geometry depth-prepass, where 

the depth buffer is filled. This is then sampled, and 

used to reconstruct the position in view space of each 

pixel.  

 

The lighting stage then iterates through the lights, each 

of which have a unique index, and decides if the light 

affects that viewspace position. If the position is 

affected by a light, the index of that light is stored in a 

Light-Index buffer. 

 

During the geometry rendering stage, the pixel stage 

samples the light-index buffer to detect which lights 

affected the geometry, and uses the light index to 

look-up the light properties in light data textures. The 

light data textures contain data such as; the position, 

colour and attenuation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.1 

Example pipeline proposed by Damian Trebilco 
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Figure 3.1.2  

Example of Light Indexed Deferred Rendering 

(Courtesy of Damian Trebilco) 

 

 

 

 

Unfortunately, as the index is stored per pixel, the 

index can be overwritten by a later light which also 

affects the geometry.  

 

(Trebilco 2009) derived a solution whereby the light 

index of four lights is packed into the texture’s 

R,G,B and A channels, however this still means 

only four lights can contribute to a single pixel’s 

lighting, unlike standard deferred shading where the 

number of effective lights per pixel is not bound by 

the storage method. 

 

 

3.2 Light Pre-Pass deferred rendering 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.1  
Example pipeline proposed by 

Wolfgang Engel 

 

 

Wolfgang Engel (2009) introduced the concept of the light-pre-pass 

renderer as a solution to minimize the size of the G-Buffer. If lighting is 

calculated prior to geometry rendering, material data does not need to be 

stored, as this can be applied during the post-lighting geometry stage. 

This results in the light pre-pass concept having greater material 

flexibility than the standard deferred shading concept. 

 

Where a standard deferred shading renderer would typically store the 

final light contribution for each pixel in the Light Buffer (L-Buffer) before 

combining the L-Buffer with the G-Buffer, Engel (2009) proposes storing 

light properties as terms of the lighting calculation. As this approach does 

not complete the equation, but outputs the lighting terms, the production 

of the L-Buffer requires less processing.  

 

The original technique proposed by Engel (2009) only uses a single 

texture and does not store a specular component, as the lighting properties 

require four values to be stored independently. As the specular component 

should ideally be combined with the lighting buffer, an extra texture to 

store specular properties will be needed.  

 

Applying the specular term to the fourth channel of the texture allows the 

diffuse and specular terms to be stored together, at the cost of the specular 

terms not modelling realistic specular lighting perfectly (Engel, 2009). 

 

 

 

Pre-lighting geometry 

pass 

Lighting stage 

Post-lighting geometry 

pass 

G-Buffer 

L-Buffer 
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Figure 3.2.2 Light Pre Pass rendering used in Blur. 

 

The light pre-pass concept allows the calculation of different lighting models to be evaluated at the post-lighting 

geometry stage and so allows further flexibility in material types. The concept could be adapted to store a closer 

approximation to the specular term, including specular light colour, however this would require six channels, 

three for diffusive properties and three for specular.  

 

 

 

3.3 Inferred Lighting 

 

Scott Kircher and Alan Lawrance (2009) present an extension of the Light Pre Pass concept. Utilizing the result 

of separating the lighting from the material and geometry stages, Kircher and Lawrance proposed that 

calculating lighting at a different resolution to the final render is possible with minimal visual artefacts. By 

calculating the lighting for a texture at 60% the size of the final rendered image, 40% of the lighting calculations 

need not be calculated. This optimization allows for more lights, or for the processing to be used elsewhere.  

 

Unfortunately, during up-scaling the light texture when sampling at the final geometry stage, visual artefacts 

appear where the edges of rendered polygons lose definition. 

 

 

 
Figure 3.3.1 

Example artefacts due to up-scaling the light buffer (Top). 

Using the DSF to solve this issue (Bottom). 

(Image courtesy of Kircher, S. and Lawrance, A.) 

 

Scott Kircher and Alan Lawrance (2009) 

propose using a Discontinuity Sensitive-Filter 

(DSF) applied to the lower resolution image as 

an effective edge-detection between 

discontinuous polygons. This filter technique 

requires a unique object ID and polygon ID to 

be generated for the geometry and stored per 

vertex. The DSF decides if two pixels are edges 

if their IDs do not match.   

When combined with the up-scaling of the L-

Buffer, this solution solves many of the 

artefacts.  

 

Inferred lighting has the potential to require 

less computation and thus perform faster than 

Light-Pre Pass implementations of the same 

resolution, as the resolution of the L-Buffer can 

be scaled down (Brown, 2009). 
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3.3.1  Transparency 
 

Developing the work of David Pangerl(2009), lighting 

for four layers of semi-transparent geometry can be 

calculated using a stippled pattern when writing the 

geometry to the G-Buffer.  This pattern can then be 

reversed at the final geometry stage to re-produce the 

four layers of transparency with lighting, using the 

DSF (Kircher, Lawrance, 2009). This is an elegant 

solution to the transparency problem deferred shading 

renderers typically suffer from. 

 

 

 

 

 
 

Figure 3.3.2 

Example of stippled pattern when rendering semi-

transparent geometry (Left), and the transparency 

solved using the DSF (Right). 

Conclusion 
 

Rendering a scene with many dynamic lights takes less processing time when using a modified deferred shading 

pipeline over standard forward rendering. Moreover, it’s possible to increase flexibility of materials – and 

lighting models, by deferring lighting calculations to a later geometry pass, as shown with the Light-Pre-Pass 

and Light Indexed designs.  

 

Due to the limitation of a light overlap boundary, a Light-Indexed deferred shading implementation may not 

provide enough lighting accuracy when a scene contains many overlapping lights; yet it will perform much 

faster than a standard forward approach for the same scene, and require less video memory than a standard 

deferred shading solution. 

 

In a contrasting situation where the accumulated lighting must be accurate, and the target platform does not 

support multiple render targets, a Light-Pre-Pass implementation will perform faster than a standard deferred 

approach, with less visual errors where lights overlap. 

 

Finally, by lowering the resolution of the light buffer and using a smart edge-detection filter, lighting 

calculations can be performed on fewer pixels and thus increase performance, at slight accuracy cost. This 

concept could equally be applied to the standard deferred approach, along with the Light-Indexed approach. 
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Appendix C: 

Prototype UML  
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Appendix D: Duality Engine UML 

Duality Engine structure 

 
 

Entity Manager structure 

 

Input Manager structure 

 



63 
 

Renderer structure 
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Appendix E: Simple anaglyph issues 

 
Frequency issues with using a simple 
implementation of anaglyph filtering. Top, cyan 
and red channels used for filtered image. 
Bottom, the filters removed, image as seen by 
receiver. Notice the difference in the brightness 
and contrast of the images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix F: Pure anaglyph 

 
Frequency issues removed by saturating the 
images before applying the filters. Top, cyan and 
red channels used for filtered image. Bottom, the 
filters removed, image as seen by receiver. 
Notice how the images are now the same, 
minimizing retinal rivalry. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

  
 

  

  
 

  
  

  


